Steady State of Dust Distributions in Disk Vortices: Observational Predictions and Applications to Transitional Disks

نویسنده

  • WLADIMIR LYRA
چکیده

The Atacama Large Millimeter Array (ALMA) has been returning images of transitional disks in which large asymmetries are seen in the distribution of mm-sized dust in the outer disk. The explanation in vogue borrows from the vortex literature by suggesting that these asymmetries are the result of dust trapping in giant vortices, excited via Rossby wave instability (RWI) at planetary gap edges. Due to the drag force, dust trapped in vortices will accumulate in the center, and diffusion is needed to maintain a steady state over the lifetime of the disk. While previous work derived semianalytical models of the process, in this paper we provide analytical steady-state solutions. Exact solutions exist for certain vortex models. The solution is determined by the vortex rotation profile, the gas scale height, the vortex aspect ratio, and the ratio of dust diffusion to gas-dust friction. In principle, all these quantities can be derived from observations, which would give validation of the model, also giving constrains on the strength of the turbulence inside the vortex core. Based on our solution, we derive quantities such as the gas-dust contrast, the trapped dust mass, and the dust contrast at the same orbital location. We apply our model to the recently imaged Oph IRS 48 system, finding values within the range of the observational uncertainties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vortices in self-gravitating disks

Vortices are believed to greatly help the formation of km sized planetesimals by collecting dust particles in their centers. However, vortex dynamics is commonly studied in non-selfgravitating disks. The main goal here is to examine the effects of disk self-gravity on the vortex dynamics via numerical simulations. In the self-gravitating case, when quasi-steady gravitoturbulent state is reached...

متن کامل

Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds⋆

Context. Transitional disks are thought to be a late evolutionary stage of protoplanetary disks whose inner regions have been depleted of dust. The mechanism responsible for this depletion is still under debate. To constrain the various models it is mandatory to have a good understanding of the properties of the gas content in the inner part of the disk. Aims. Using X-Shooter broad band − UV to...

متن کامل

The Formation and Role of Vortices in Protoplanetary Disks

We carry out a two-dimensional, compressible, simulation of a disk, including dust particles, to study the formation and role of vortices in protoplanetary disks. We find that anticyclonic vortices can form out of an initial random perturbation of the vorticity field. Vortices have a typical decay time of the order of 50 orbital periods (for a viscosity parameter α = 10 and a disk aspect ratio ...

متن کامل

Large-scale Asymmetries in the Transitional Disks of Sao 206462 and Sr 21

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations in the dust continuum (690 GHz, 0.45 mm) and CO J = 6 − 5 spectral line emission, of the transitional disks surrounding the stars SAO 206462 and SR 21. These ALMA observations resolve the dust-depleted disk cavities and extended gaseous disks, revealing large-scale asymmetries in the dust emission of both disks. We mode...

متن کامل

The effect of dust settling on the appearance of protoplanetary disks

We analyze how the process of dust settling affects the spectral energy distribution and optical appearance of protoplanetary disks. Using simple analytic estimates on the one hand, and detailed 1+1-D models on the other hand, we show that, while the time scale for settling down to the equator may exceed the life time of the disk, it takes much less time for even small grains of 0.1 μm to settl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013